Any Port in a Storm: Impacts of Salt Pollution on Pond-Dwelling Amphibian Communities

Zira MacFarlane, Ethan Sun, Helen Wen, Hannah Bodmer, Shannon McCauley Department of Ecology & Evolutionary Biology, University of Toronto

Introduction

A CALL A CALL

Urban freshwater systems are limited & lower quality – pollution, isolation. Patterns of disturbance within urban streams have been observed. Urban ponds, however, remain comparatively understudied [1].

Salt is a major urban freshwater pollutant, especially in artificial habitat (*e.g.*, stormwater retention ponds). Increases in salinity have been associated with reductions in habitat quality, biological integrity, and restructuring of biological communities [2].

Methods

Long term study in a mesocosm system:

- 10 experimental ponds, adjacent & constructed identically
- 5 control, 5 elevated salinity (1 g/L in line with CEPA chronic toxicity thresholds)

Surveys every two weeks (breeding season) or four weeks (winter):

Water Quality

Amphibians have been a popular choice in bioindicator for assessing the impacts of freshwater ecosystem salt pollution. However, their responses can be affected by the complexity of urban disturbance regimes [3].

This project isolates the effects of salt on amphibian habitat choice and breeding success to answer two main questions:

1) Are ponds with elevated salinity habitat for amphibians?

2) Are ponds with elevated salinity **good** habitat for amphibians?

Mator Quality

- Amphibian Larvae
- Macroinvertebrates (Hannah Bodmer)
- Adult Dragonflies & Damselflies (Hannah Bodmer)

Figure 1: Experimental Pond Structure & Dipnet Survey Design. A) Experimental pond layout. Ponds are designed to provide multiple microhabitats. S1-4 are sweep locations in the different pond microhabitats: S1 – Shallows; S2 - Open water column; S3 – Benthic layer + leaf litter; S4 – Sheltered water column (overhang & submerged vegetation).

Species		Adult Presence		Larvae Presence (2024)		Larval Population Size	Larval Metamorphosis	Observed Larval Mortality	
		Control	Treatment	Control	Treatment			Control	Treatment
	American Toad	Y	Υ	Y	Υ	No Effect Observed	No Effect Observed	0	16
	Grey Tree Frog	Y	N	Y	N	No Effect Observed	No Effect Observed	1	0
	Spring Peeper	Υ	Υ	Y	Υ	Treatment < Control (Yr 1) Treatment > Control (Yr 2)	No Effect Observed	4	2
	Green Frog	Y	Y	Ν	Υ	No Effect Observed	No Effect Observed	0	5
	American Bullfrog	Υ	Υ	N	N	Preliminary C	onclusion	S	

Mink Frog	Y	Y	Ν	Ν
Northern Leopard Frog	Υ	Ν	Y	Ν

Table 1: Habitat Choice & Breeding Success from 2023-2024. All anuran species observed in the local landscape and in the experimental pond network. Landscape community composition assessed using bioacoustics (Research Opportunity Student Undergraduate Projects: Ethan Sun & Helen Wen). Treatment had a significant effect on larval community structure (PERMANOVA: Treatment: p<0.01, Treatment*Year: P<0.05) & this table identifies changes to habitat choice & larval population dynamics attributed to treatment.

- Ponds with elevated satinity are **still** habitat for adults, but not necessarily for breeding.
 Devale with elevated satinity wave reading.
- 2) Ponds with elevated salinity were **worse** habitat: Increased larval mortality, overwintering failure
- 3) Observed guild changes in invertebrate communities chironomids to chaoborids.
- 4) Water quality reductions. Increased incidence of lemna blooms, reduced incidence of algal blooms.

Next Steps: Persistence! Larval body condition, ecological functioning, trophic structuring.

Acknowledgements: With heartfelt gratitude to our funders: the Zimmermann & Weiss Foundations, the University of Toronto at Mississauga, and Sigma Xi. Additional thanks are also due to a plethora of helping hands: Anna Szydlowski, Silas Peters, Marcus Lai, Nihal Ercin, and the rest of the McCauley and Murray labs; Meredith Swartwout & Chris Boccia; the staff of the Koffler Scientific Reserve; Phoenix Sandrock for their expertise in algae & ice; and Gabe McBreen for their eternal patience and good humor.	 1: Ferzoco et al., (2023). Freshwater insect communities in a field. Frontiers in Ecology & Evolution 11 2: Ferzoco & McCauley (2024). Novel habitats for biodiversitate biodiversity in stormwater management ponds. Science of 3: Guzy et al., (2012). Urbanization interferes with the use of Journal of Applied Ecology 49

1: Ferzoco *et al.,* (2023). Freshwater insect communities in urban environments around the globe: a review of the state of the Field. Frontiers in Ecology & Evolution 11 2: Ferzoco & McCauley (2024). Novel habitats for biodiversity? A systematic review and meta-analysis of freshwater Diodiversity in stormwater management ponds. Science of the Total Environment 942

3: Guzy et al., (2012). Urbanization interferes with the use of amphibians as indicators of ecological integrity of wetlands. Journal of Applied Ecology 49